ARTICLE

Isotopic Analysis of Actinides and Fission Products in LWR High-Burnup UO₂ Spent Fuels and its Comparison with Nuclide Composition Calculated Using JENDL, ENDF/B, JEF and JEFF

Akihiro SASAHARA^{1,*}, Tetsuo MATSUMURA², Giorgos NICOLAOU³ and Yoshiaki KIYANAGI⁴

¹Nuclear Technology Research Laboratory, Central Research Institute of Electric

Power Industry, 2-11-1, Iwado Kita, Komae-Shi, Tokyo 201-8511, Japan

²Material Science Research Laboratory, Central Research Institute of Electric

Power Industry, 2-61 Nagasaka, Yokosuka-Shi, Kanagawa 240-0196, Japan

³Laboratory of Nuclear Technology, Department of Electrical and Computer Engineering,

Faculty of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

⁴Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan

(Received August 24, 2007 and accepted in revised form December 1, 2007)

A chemical isotopic analysis of the actinides and fission products of a high-burnup PWR-UO₂ fuel with an average burnup of 60.2 MWd/kgHM was carried out to accumulate extensive nuclide composition data. Furthermore, computational analysis was performed using the integrated burnup calculation code SWAT. The differences between the amounts obtained by the chemical isotopic analysis and SWAT calculation using JENDL-3.2, JENDL-3.3, ENDF/B-VI.5, ENDF/B-VI.8, JEF-2.2 and JEFF-3.0 were evaluated as the ratios of the calculated values to the experimental values (C/E ratios). For actinides, the calculated ²⁴⁴Cm amount, which is an important nuclide as a major neutron source in spent fuels, was underestimated. The main sensitive path for ²⁴⁴Cm was therefore investigated by a simple depletion calculation for actinides and the cause of the underestimation of the calculated ²⁴⁴Cm amount is discussed. The fission products ⁸⁸Sr, ⁹⁰Sr, ⁸⁹Y, ¹⁰⁶Ru, ¹³³Cs, ¹³⁵Cs and ¹⁴⁴Nd, for which the C/E ratios were larger than 1.05 or smaller than 0.95, were investigated to improve their C/E ratios by a simple depletion calculation with simplified burnup chains and sensitivity coefficients, and the correction values for the fission yields or capture cross sections were estimated. The effect of power history on nuclide composition was also investigated. Additionally, the fission products for which the C/E ratios strongly depend on the type of library are discussed using sensitivity coefficients.

KEYWORDS: high-burnup UO₂ fuel, isotopic analysis, actinides, fission products, SWAT code, JENDL-3.2, JENDL-3.3, ENDF/B-VI.5, ENDF/B-VI.8, JEF-2.2, JEFF-3.0, sensitivity analysis

I. Introduction

In the shielding and criticality safety analysis of spent fuel storage facilities, safety evaluation is performed by introducing a safety margin that takes into account such uncertainty in radiation source intensity and its energy distribution from spent fuels, and the reactivity of unirradiated fuel. Radiation source intensity and energy distribution depend on the nuclide composition of spent fuels. Therefore, the verification of and improvement in the accuracy of calculating the nuclide composition in spent fuels are necessary and will lead to a reasonable design as well as to improved shielding and criticality safety analysis of spent fuel storage facilities; they may also contribute to the introduction of burnup credit. This is of particular importance for high-burnup UO_2 spent fuels.

Regarding the experimental determination of nuclide composition, the spent fuel isotopic composition database (SFCOMPO)¹⁾ published by the Nuclear Energy Agency (NEA) includes actinides such as uranium and plutonium isotopes, and some fission products such as cesium and neodymium isotopes in pressurized water reactor (PWR) and boiling water reactor (BWR) spent fuels (UO₂ and UO₂-Gd₂O₃). In the SFCOMPO, the nuclide compositions of Japanese commercial PWR and BWR spent fuels are compiled but their burnups are rather low (~47 MWd/kgHM). In addition, a comparison of the experimental nuclide composition with the calculated one for Japanese commercial spent fuels has been performed using the ratios of the calculated values to the experimental values (C/E ratios).^{2,3)} Other evaluations of nuclide compositions have been reported in Refs. 4) and 5), in which the trend of the C/E ratios is discussed for UO₂ spent fuels with a burnup range of 30 to 55 MWd/kgHM; however, the experimental nuclide compositions of such fuels have not yet been published.

^{*}Corresponding author, E-mail: sasa@criepi.denken.or.jp

[©]Atomic Energy Society of Japan

 Table 1
 Average power histories and burnups for high-burnup

 PWR-UO2
 fuel

Cycle	Average specific power (MW/t)	Burnup (MWd/kgHM)
1	37.9	11.3
2	48.2	14.9
3	40.6	12.3
4	35.8	11.3
5	32.8	10.4

For source intensity, it has been reported that the calculated neutron intensity emitted by spent fuels is 20–45% lower than the experimental one;⁶⁾ this underestimation mainly resulted from the low calculation accuracy of ²⁴⁴Cm that is a major neutron source in spent fuels.

Thus, at present, the experimental nuclide composition data and its evaluation, and discussion for improving the calculation accuracy for the nuclide composition of high-burnup UO_2 spent fuel remain insufficient.

In this study, a chemical isotopic analysis of a high-burnup PWR-UO₂ spent fuel with a burnup range of 53 to 65 MWd/kgHM is carried out to accumulate extensive nuclide composition data for actinides and fission products. Furthermore, computational analysis is carried out using the integrated burnup calculation code system SWAT.⁷¹ The libraries used in this study are JENDL-3.2,⁸¹ JENDL-3.3,⁹¹ ENDF/B-VI.5 (release 6.5), ENDF/B-VI.8 (release 6.8),¹⁰¹ JEF-2.2¹¹⁾ and JEFF-3.0,¹²⁾ which are generally used in various neutronics codes and adapted for use with SWAT. The differences between the amounts of actinides and fission products obtained by chemical isotopic analysis and calculated by SWAT are evaluated as the C/E ratios.

In actinide isotopes, the 244 Cm amount, which directly affects neutron emission by spent fuels after cooling, is investigated on the basis of the C/E ratio using a simple depletion calculation.

For the fission products that are important gamma and decay heat sources, neutron absorbers or burnup indicators and whose C/E ratios are larger than 1.05 or smaller than 0.95, sensitivity analysis is carried out to determine the fission products that strongly influence the production of the concerned fission products and to estimate the correction values for the fission yields or capture cross sections.

The effect of power history on nuclide composition is also investigated. In addition, the fission products for which the C/E ratios strongly depend on the type of library are discussed using sensitivity coefficients.

II. Materials and Methods

1. Specifications of Spent Fuels and Chemical Analysis

The high-burnup PWR-UO₂ spent fuel rod used in this study $(3.8\%^{235}\text{U}, 60.2 \text{ MWd/kgHM}$ declared average burnup) was loaded in a 15 × 15 fuel assembly and irradiated for five cycles in a European commercial nuclear power reactor. Its average power histories and burnups achieved in all cycles are given in **Table 1**.

 Table 2
 Measurement accuracy for nuclide determination

Nuclide	Measurement accuracy (%)
²⁴² Cm, ²⁴⁴ Cm	5–10
Ru, ¹³⁴ Cs, ¹³⁷ Cs, ¹⁴⁴ Ce, ¹⁵⁴ Eu	3–5
U, Pu Am, ²⁴⁵ Cm, ²⁴⁶ Cm, Nd	< 0.5 1
¹⁴⁷ Pm+ ¹⁴⁷ Sm, ¹⁵⁴ Sm+ ¹⁵⁴ Gd	< 3
²³⁷ Np, Rb, Sr, Y, ¹³³ Cs, ¹³⁵ Cs, ¹³⁹ La, ^{140,142} Ce, ¹⁴¹ Pr, ¹⁴⁷ Pm, Sm, ^{153,155} Eu, Gd	2–3

 Table 3
 Elapsed time from discharge to chemical isotopic analysis for each sample

Sample	Nuclide	Period (day)
А	U, Np, Pu Am, Cm, fission products	1206 1234
B, C, D	¹³⁴ Cs, ¹³⁷ Cs, ¹⁵⁴ Eu U, Pu Np, other fission products Am, Cm	1625 1649 1696 1706

A chemical isotopic analysis of samples A, B, C and D, extracted at four different axial positions of the high-burnup PWR-UO₂ fuel, was carried out. The isotopic composition of sample A has been reported.¹³⁾ In the present study, further analysis of samples B, C and D was performed at the Institute for Transuranium Elements (ITU) in Karlsruhe, Germany. In the chemical isotopic analysis, the total dissolution of the samples was performed in nitric acid/hydrogen fluoride solution using an autoclave. Hence, even insoluble isotopes such as ruthenium completely dissolved in the solution.

Each solution from samples B, C and D was analyzed using the following mass- and energy-based spectrometry techniques: thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICP-MS), ICP-MS coupled to an ion chromatography column (IC-ICP-MS), and alpha and gamma spectrometry. **Table 2** shows the measurement accuracy for the nuclide determination. These values include the uncertainty in the sample preparation procedure and also in the analytical chemical technique. The elapsed times from the fuel discharge to the chemical isotopic analysis for all the samples are shown in **Table 3**.

2. Computations and Modeling

The nuclide composition of actinides and fission products was computed using the SWAT code, which is an integrated burn-up code developed at the Japan Atomic Energy Research Institute (JAERI). The code contains and combines the general purpose neutronics code SRAC¹⁴) and ORIGEN2.¹⁵ A number of infinite dilution cross sections are prepared in SWAT and can be replaced with the effective

Fig. 1 Dimensions and regions used in calculation for high-burnup PWR-UO₂ fuel

 Table 4
 Sample
 burnups
 determined
 by
 chemical
 isotopic

 analysis
 analysis
 analysis
 by
 by

Sample	Burnup (MWd/kgHM)	
А	64.7	
В	52.8	
С	60.0	
D	63.5	

cross sections calculated using SRAC. In this study, the neutron spectrum and the effective cross sections were calculated using the ultrafine resonance absorption calculation (PEACO) routine in SRAC, and the effective cross sections for all of the nuclides, which were used to evaluate their C/E ratios were calculated using PEACO. The libraries JENDL-3.2, JENDL-3.3, ENDF/B-VI.5, ENDF/B-VI.8, JEF-2.2 and JEFF-3.0, and the fission yields of JNDC-V2¹⁶) were used in the SWAT calculation.

In a PWR-UO₂ fuel assembly, the homogeneities of the types of fuel and moderator density are better than those in a BWR-UO₂ fuel assembly. Thus, a square cell model was applied, considering an equivalent volume ratio of fuel to moderator with the whole fuel assembly. The geometry used in the calculations is shown in **Fig. 1**. It is composed of three regions: fuel pellet, cladding and moderator. The temperatures of the fuel and cladding were 900 and 600 K, respectively, and they are typical temperatures of LWR fuels. The moderator temperatures for samples A, B, C and D were 591, 568, 596 and 577 K, respectively, and they were calculated by considering the axial power density distribution. The constant boric acid concentration (500 ppm) was used in the calculations.

The uncertainties due to the modeling of the moderator region in the square cell model, temperatures, boron concentration and depletion calculations were estimated and the uncertainty in the calculated results was less than 4%. In SWAT, the neutron flux depending on the depletion is calculated using the SRAC code, which has been verified and is generally used in Japan, and the burnup calculation is carried out using the ORIGEN2 code in which the matrix exponential method is applied. Thus, in the comparison of SWAT with MVP-BURN, which is a continuous-energy Monte Carlo burnup calculation code, the difference in their calculated result is less than 2%.²⁾

III. Results and Discussion

1. Nuclide Compositions of Actinides and Fission Products Determined Experimentally

The local burnup was deduced on the basis of both the amounts of the total heavy metals such as uranium and plutonium isotopes, and the amount of ¹⁴⁸Nd determined by the chemical isotopic analysis. **Table 4** shows the local burnups for the samples determined by the chemical isotopic analysis. The burnup range of these samples is 53–65 MWd/kgHM.

The isotopic compositions of the following elements were determined: uranium, neptunium, plutonium, americium, curium, rubidium, strontium, yttrium, ruthenium, cesium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium and gadolinium. Tables 5 shows the number densities per gram solution of the actinides and fission products obtained experimentally. The number density differs between the samples because the weights of the samples dissolved were different. Sample A selected from part of the fuel, in which the highest neutron emission occurred, shows a peak burnup of the fuel. For samples C and D, the chemical isotopic analysis of ²⁴²Cm failed because of the low ²⁴²Cm concentration. Some of the fission products such as ⁸⁶Sr and ¹⁴⁴Ce were measured only for sample A; for ¹⁴⁷Pm and ¹⁴⁷Sm, and ¹⁵⁴Sm and ¹⁵⁴Gd, the sum of their amounts in samples B, C and D was individually measured by ICP-MS.

2. Comparison of Experimental and Computational Compositions

The C/E ratios of the amounts calculated using SWAT to the experimental amounts for actinides and fission products are shown in **Figs. 2** and **3**, respectively. The C/E ratios in the figures are the average of those of samples A, B, C and D for each nuclide. The trend of the C/E ratio for each nuclide was similar among the samples. Thus, the average C/E ratios show the average trend of the calculated amount of each nuclide and were used to investigate the calculated amount of nuclides in the high-burnup UO₂ fuel.

(1) C/E Ratios for Actinides

In Fig. 2(a), the calculated 234 U amount is 17–21% larger than the experimental one. The initial 234 U amount in fresh fuel strongly depends on the enrichment process for 235 U. In this calculation, the overestimation of 234 U is most likely caused by the assumed initial amount.

There was scattering in the C/E ratios for ²³⁷Np, ^{242m}Am and ²⁴²Cm among the samples. In particular, the ^{242m}Am and ²⁴²Cm concentrations in the samples are low (Table 5(a)), so that their chemical analysis may be difficult. For ²³⁷Np, it is not clear whether the scatter is caused by the difficulty in the chemical analysis process or the calculation accuracy.

 Table 5
 Results of chemical isotopic analysis of high-burnup PWR-UO2 spent fuel

(a) Actinides

	A ¹³⁾	В	С	D		A ¹³⁾	В	С	D					
Nuclide		Number/gr	am solution		Nuclide									
²³⁴ U	8.74×10^{15}	1.14×10^{16}	$1.05 imes 10^{16}$	9.30×10^{15}	²⁴² Pu	1.11×10^{17}	$8.73 imes 10^{16}$	1.19×10^{17}	1.14×10^{17}					
²³⁵ U	1.64×10^{17}	2.96×10^{17}	2.14×10^{17}	1.60×10^{17}	²⁴¹ Am	2.09×10^{16}	2.31×10^{16}	2.82×10^{16}	3.20×10^{16}					
²³⁶ U	3.66×10^{17}	4.07×10^{17}	4.16×10^{17}	3.88×10^{17}	^{242m} Am	6.48×10^{13}	6.07×10^{13}	8.40×10^{13}	9.60×10^{13}					
²³⁸ U	6.22×10^{19}	7.02×10^{19}	7.11×10^{19}	6.67×10^{19}	²⁴³ Am	3.01×10^{16}	1.84×10^{16}	3.05×10^{16}	3.80×10^{16}					
²³⁷ Np	5.51×10^{16}	5.70×10^{16}	4.81×10^{16}	5.71×10^{16}	²⁴² Cm	1.13×10^{13}	8.40×10^{11}							
²³⁸ Pu	3.61×10^{16}	2.78×10^{16}	3.97×10^{16}	3.63×10^{16}	²⁴⁴ Cm	1.97×10^{16}	9.30×10^{15}	1.62×10^{16}	1.64×10^{16}					
²³⁹ Pu	3.60×10^{17}	3.68×10^{17}	$4.00 imes 10^{17}$	3.41×10^{17}	²⁴⁵ Cm	$1.68 imes 10^{15}$	$6.80 imes 10^{14}$	1.40×10^{15}	1.40×10^{15}					
²⁴⁰ Pu	2.19×10^{17}	2.15×10^{17}	2.45×10^{17}	2.18×10^{17}	²⁴⁶ Cm	4.66×10^{14}	1.40×10^{14}	3.80×10^{14}	3.90×10^{14}					
²⁴¹ Pu	1.07×10^{17}	$9.58 imes 10^{16}$	1.12×10^{17}	9.57×10^{16}										

				(b) Fi	ssion products				
	A ¹³⁾	В	С	D		A ¹³⁾	В	С	D
Nuclide	Nı	umber/gram s	olution (×10	¹⁶)	Nuclide	Nu	umber/gram s	olution (×10	16)
⁸⁵ Rb	4.48	3.09	3.68	3.38	¹⁴⁶ Nd	15.9	14.8	19.1	16.7
⁸⁷ Rb	9.57	7.10	8.30	7.84	¹⁴⁸ Nd	7.92	7.21	8.37	8.33
⁸⁶ Sr	0.13	_		_	¹⁵⁰ Nd	4.05	3.50	4.20	4.08
⁸⁸ Sr	13.7	10.9	13.2	12.4	¹⁴⁷ Pm	0.78			
⁹⁰ Sr	17.4	18.6	21.9	20.7	¹⁴⁷ Sm	2.93			
⁸⁹ Y	15.9	15.8	18.2	17.1	¹⁴⁸ Sm	4.58	3.16	4.90	4.00
¹⁰⁶ Ru	0.40			_	¹⁵⁰ Sm	6.55	5.63	6.70	6.53
¹³³ Cs	24.8	28.3	33.8	22.0	¹⁵¹ Sm	0.16			
¹³⁴ Cs	1.29	0.68	0.94	0.90	¹⁵² Sm	1.89	1.70	1.90	1.80
¹³⁵ Cs	9.03	8.54	10.7	7.61	¹⁵⁴ Sm	0.89			_
¹³⁷ Cs	26.5	23.2	27.5	26.2	¹⁵³ Eu	2.27	2.14	2.60	2.38
¹³⁹ La	20.3	26.7	32.1	29.9	¹⁵⁴ Eu	0.35	0.30	0.36	0.33
¹⁴⁰ Ce	30.5	25.8	29.5	27.5	¹⁵⁵ Eu	0.11			_
¹⁴² Ce	26.9	22.8	26.7	25.6	¹⁵⁴ Gd	0.22			_
¹⁴⁴ Ce	0.24			_	¹⁵⁵ Gd	0.09			_
141 Pr	21.8	22.9	27.6	24.8	¹⁵⁶ Gd	4.19	4.34	6.04	6.49
¹⁴² Nd	0.95	_		_	¹⁵⁸ Gd	0.59	_	_	_
¹⁴³ Nd	12.1	11.9	13.6	12.1	¹⁶⁰ Gd	0.05			
¹⁴⁴ Nd	34.2	29.7	36.4	36.0	¹⁴⁷ Pm+ ¹⁴⁷ Sm	_	4.03	4.24	3.84
¹⁴⁵ Nd	12.3	12.2	14.0	12.8	¹⁵⁴ Sm+ ¹⁵⁴ Gd	_	0.98	1.70	1.22

Hence, more isotopic analysis data for these nuclides in high-burnup UO_2 fuels are necessary for a detailed discussion of their calculation accuracy.

The C/E ratio for 241 Am is overestimated (about 15–18%), whereas that for 243 Am is underestimated (about 9%). The C/E ratios for 245 Cm depend on the libraries but are generally underestimated. The C/E ratios for 246 Cm are also underestimated. These trends are similar to those in other evaluations.^{2,3)}

The neutron intensity, particularly in high-burnup UO_2 spent fuels, is important for the shielding of spent fuel storage facilities. However, the calculated neutron intensity emitted by spent fuels was lower than the experimental one.⁶⁾ Curium-244 is the major neutron emission source in spent fuels after a 3~4-year cooling time, and its major production path in this high-burnup UO_2 fuel is

$$\label{eq:238} \begin{array}{l} U \rightarrow {}^{239}\text{Np} \rightarrow {}^{239}\text{Pu} \rightarrow {}^{240}\text{Pu} \rightarrow {}^{241}\text{Pu} \\ \rightarrow {}^{242}\text{Pu} \rightarrow {}^{243}\text{Pu}/{}^{243m}\text{Pu} \rightarrow {}^{243}\text{Am} \rightarrow {}^{244}\text{Cm}. \end{array}$$

In Fig. 2, the C/E ratios for ²³⁹⁻²⁴¹Pu are overestimated by 5 to 14% and those for the nuclides from ²³⁹Pu to ²⁴³Am decrease along this production path; consequently, the C/E ratio for ²⁴⁴Cm calculated with any library is underestimated by 10 to 20%. This trend of C/E ratios is similar to that in the rather low-burnup UO₂ fuels.^{2,3)} Hence, further discussion of ²⁴⁴Cm production is carried out using the sensitivity coefficients in Section 4.

(2) C/E Ratios for Fission Products

In Fig. 3, the C/E ratios for Sr isotopes, ⁸⁹Y and ¹⁴⁴Ce are underestimated. On the other hand, the C/E ratio for ¹⁰⁶Ru is overestimated by about 9%. For cesium isotopes, the C/E ratios for ¹³³Cs and ¹³⁵Cs are underestimated by about 9%, whereas the calculated amounts of ¹³⁴Cs and ¹³⁷Cs are in good agreement with the experimental ones. For neodymium isotopes, generally, their calculated amounts are in good agreement with the experimental ones, except for ¹⁴²⁻¹⁴⁴Nd. The C/E ratio for ¹⁵¹Sm is overestimated by 6 to 13% and that for ¹⁴⁷Pm, which is the precursor of samarium isotopes, is also overestimated by about 20%. For gad-

Fig. 2 Measured and calculated amounts of actinides as C/E ratio The C/E ratio for ²³⁵U is the depletion ratio between the beginning and end of irradiation; those for other actinides are normalized by the residual ²³⁸U amount.

olinium isotopes, generally, their C/E ratios are underestimated.

The C/E ratios for the fission products shown in **Table 6** are not so good, namely, they are greater than 1.05 or less than 0.95 and their calculation accuracy is rather low, although such fission products are important gamma and decay heat sources, neutron absorbers, burnup indicators or are produced in relatively large amounts in spent fuels. Further investigation of the fission products given in Table 6 is therefore carried out using the simplified burnup chains in Section 5.

For 154 Eu, 155 Eu, 154 Gd and 155 Gd, their C/E ratios strongly depend on the type of library. Hence, the dependence of the C/E ratios for these fission products on the type of library is discussed in Section 7.

3. Simple Depletion Calculations of Actinides and Fission Products

In the SWAT code, a large number of nuclides can be treated in their burnup calculation. Hence, it is not convenient to focus on particular production paths. For this reason, a simple depletion calculation for actinides and fission products was developed, and production paths that have large sensitivities for concerned nuclides were investigated.

For actinides, the decay and production shown in **Fig. 4** were simplified (Eq. (1)), and the investigation was focused on the ²⁴⁴Cm production path. For fission products, simplified burnup chains, in which the fission yields for short-lived fission product nuclides can be treated as cumulative fission yields, were developed (Eq. (2)) to investigate the production of nuclides shown in Table 6.

• Actinides $N_{i}(t) =$

$$\begin{split} N_{i}(t) &= N_{i0} exp\{[-(\sigma_{\gamma,il} + \sigma_{f,i})\phi + \lambda_{id}]t\} \\ &+ \sum_{j=1}^{n} \frac{\sigma_{\gamma,ji}}{\sigma_{\gamma,ji} + \sigma_{f,j}} \left(N_{j0} - N_{j}(t)\right) \\ &+ \sum_{k=1}^{m} \frac{\lambda_{ki}}{(\sigma_{\gamma,kg} + \sigma_{f,k})\phi + \lambda_{ki}} \left(N_{k0} - N_{k}(t)\right), \end{split}$$
(1)

Fig. 3 Measured and calculated amounts of fission products as C/E ratio The C/E ratios are normalized by the residual ^{238}U amount.

 Table 6
 Fission products investigated

Characteristic	Fission product
Gamma source/decay heat	⁹⁰ Sr
Neutron absorption	133 Cs, 135 Cs
Burnup indicator	106 Ru
Large production amount	⁸⁸ Sr, ⁸⁹ Y, ¹⁴⁴ Nd

Fig. 4 Depletion chain of actinide

• Fission products

$$\frac{dN_i(t)}{dt} = \gamma_i \Sigma_{f,i} \phi - \sigma_{\gamma,il} N_i(t) \phi + \sigma_{\gamma,ji} N_j(t) \phi - \lambda_{id} N_i(t) + \lambda_{ni} N_n(t), \qquad (2)$$

where $N_i(t)$: number density of nuclide i at time = t

 N_{i0} : number density of nuclide i at time = 0

- $\sigma_{\gamma,il}$: one-group microscopic capture cross section of nuclide i to l
- $\sigma_{f,i}$: one-group microscopic fission cross section of nuclide i
- λ_{id} : decay constant of nuclide i to d by β^- decay, α decay or isomeric transition
- ϕ : one-group neutron flux
- $\begin{array}{l} \gamma_i \Sigma_{f,i}: \text{ sum of production from fission reaction} \\ \text{ of } ^{235}\text{U}, & ^{238}\text{U}, & ^{239}\text{Pu} \text{ and } ^{241}\text{Pu} \text{ to} \\ \text{ nuclide i } (\gamma_i \Sigma_{f,i} = \gamma_{i,U235}\sigma_{f,U235}N_{U235} + \\ \gamma_{i,U238}\sigma_{f,U238}N_{U238} + \gamma_{i,Pu239}\sigma_{f,Pu239}N_{Pu239} + \\ \gamma_{i,Pu241}\sigma_{f,Pu241}N_{Pu241}) \end{array}$
 - $\gamma_{i,i}$: fission yield of nuclide j to i.
- m, n: numbers of nuclides contributing to decay and capture reaction, respectively.

In Eqs. (1) and (2), one-group microscopic cross sections and neutron flux depending on burnup were previously calculated using SWAT with JENDL-3.3. The number densities N_{U235} , N_{U238} , N_{Pu239} and N_{Pu241} in the term $\gamma_i \Sigma_{f,i}$ of Eq. (2) were also previously calculated using SWAT. The fission yields $\gamma_{i,j}$ were taken from the JNDC-V2 library. In this study, four simplified burnup chains that contain the fission products given in Table 6 were investigated as shown in **Fig. 5**.

The results of the comparison of nuclide compositions between the simple depletion and SWAT calculations are shown in **Table 7**. In the production path for ²⁴⁴Cm, the amounts of uranium, plutonium isotopes and ²⁴³Am obtained by the two calculations agree within 4%. The ²⁴⁴Cm amounts agreed within 8%. For fission products that are dis-

Table 7	Differences in amounts of actinides and fission products
between	n simple depletion and SWAT calculations with JENDL
3.3	

(a) Actinides													
	Nuclide	Simple depletion	on/SWAT										
	²³⁸ U	1.00											
	²³⁹ Pu	1.04											
	²⁴⁰ Pu	1.02											
	²⁴¹ Pu	1.03											
	²⁴² Pu	0.98											
	²⁴³ Am	0.96											
	²⁴⁴ Cm	0.92											
(b) Fission products													
Nuclide	Simple depletion/ SWAT	/ Nuclide	Simple depletion/ SWAT										
⁸⁸ Sr	1.01	¹⁴³ Nd	0.98										
⁹⁰ Sr	1.00	¹⁴⁴ Nd	0.99										
⁸⁹ Y	0.99	¹⁴⁵ Nd	1.00										
¹⁰⁶ Ru	1.01	¹⁴⁶ Nd	1.00										
¹³³ Cs	1.00	¹⁵³ Eu	0.97										
¹³⁴ Cs	1.00	¹⁵⁴ Eu	0.97										
¹³⁵ Cs	1.00	¹⁵⁵ Eu	0.97										
¹³⁷ Cs	0.99	¹⁵⁴ Gd	0.97										
¹⁴⁴ Ce	1.00	¹⁵⁵ Gd	0.97										

cussed in the following sections, the two calculations agree within about 3%. Hence, the sensitivity analysis and the correction for the fission yield or capture cross section were carried out using these simple depletion calculations.

4. Sensitivity Analysis

A sensitivity analysis was carried out to determine the nuclide that mainly affects the amounts of concerned actinide and fission product using Eqs. (3) and $(4)^{17}$ as follows:

$$S_{\sigma_{\alpha,j},N_i} = \frac{\sigma_{\alpha,j}}{N_i} \frac{\Delta N_i}{\Delta \sigma_{\alpha,j}}$$
(3)

$$S_{\gamma_{j,k},N_i} = \frac{\gamma_{j,k}}{N_i} \frac{\Delta N_i}{\Delta \gamma_{i,k}},\tag{4}$$

where $S_{\sigma\alpha,j,Ni}$: sensitivity coefficient of fission or capture cross section of nuclide j to i

- $S_{\gamma j,k,Ni}$: sensitivity coefficient of fission yield of nuclide j generated by fission reaction of nuclide k to i
 - $\sigma_{\alpha,j}$: one-group capture cross section $\sigma_{\gamma,jl}$ or fission cross section $\sigma_{f,j}$ of nuclide j
 - N_i: number density of nuclide i
 - $\gamma_{j,k}$: fission yield of nuclide k to j.

In Eqs. (3) and (4), ΔN_i was calculated using Eq. (1) or (2) in which the number density of nuclide i was calculated with a change by 10% in the capture $(\Delta \sigma_{\gamma,jl})$ and fission cross sections $(\Delta \sigma_{f,j})$ of the actinide, and in the capture cross section $(\Delta \sigma_{\gamma,jl})$ and fission yield $(\Delta \gamma_{j,k})$ of the fission product. For actinides, the sensitivity coefficients of all fission and capture cross sections, which are sensitive to ²⁴⁴Cm, are shown in **Table 8**. The decay of actinides during annual

Fig. 5 Depletion chains of fission products

Table 8 Summaries of sensitivity coefficients of fission and capture cross sections of actinides on major production pathof ^{244}Cm

	$S_{\sigma lpha,j,Ni}$													
N_i	$\sigma_{\gamma,238\mathrm{U}}$	$\sigma_{ m f,239Pu}$	$\sigma_{\gamma,239\mathrm{Pu}}$	$\sigma_{\gamma,240\mathrm{Pu}}$	$\sigma_{ m f,241Pu}$	$\sigma_{\gamma,241\mathrm{Pu}}$	$\sigma_{\gamma,242\mathrm{Pu}}$	$\sigma_{\gamma,243\mathrm{Am}}$	$\sigma_{ m f,244Cm}$	$\sigma_{\gamma,244\mathrm{Cm}}$				
²³⁸ U	-0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
²³⁹ Pu	0.94	-0.58	-0.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
²⁴⁰ Pu	0.96	-0.59	0.63	-0.80	0.00	0.00	0.00	0.00	0.00	0.00				
²⁴¹ Pu	0.96	-0.58	0.64	0.14	-0.62	-0.22	0.00	0.00	0.00	0.00				
²⁴² Pu	0.98	-0.50	0.68	0.25	-0.57	0.76	-0.35	0.00	0.00	0.00				
²⁴³ Am	0.98	-0.45	0.71	0.32	-0.52	0.78	0.68	-0.44	0.00	0.00				
²⁴⁴ Cm	0.99	-0.40	0.75	0.39	-0.46	0.81	0.73	0.59	-0.01	-0.18				

							(a)	Chain	1										
								S	γj,k,Ni									-	
			⁸⁸ Sı	r from			⁸⁹ Sr from					⁹⁰ Sr form							
	N_i	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu		²³⁵ U	²³⁸ U	239]	Pu	²⁴¹ Pu		²³⁵ U	²³⁸ U	²³⁹ P	u ²	⁴¹ Pu		
	⁸⁸ Sr	0.69	0.07	0.20	0.04		0.00	0.00	0.0	00	0.00		0.00	0.00	0.00) ().00		
	⁸⁹ Sr	0.00	0.00	0.00	0.00		0.36	0.12	0.4	41	0.10		0.00	0.00	0.00) ().00		
	⁹⁰ Sr	0.00	0.00	0.00	0.00		0.00	0.00	0.0	00	0.00		0.70	0.07	0.20) ().04		
	⁸⁹ Y	0.00	0.00	0.00	0.00		0.72	0.07	0.1	19	0.03		0.00	0.00	0.00) ().00	_	
							(b)	Chain	2										
									$S_{\gamma j,k,Ni}$	i									
					-			106	Ru fr	om									
				N_i		²³⁵ U	:	²³⁸ U		²³⁹ P	u	²⁴¹ Pu							
				¹⁰⁶ R	lu	0.03		0.07		0.62	2	0.28							
							(c)	Chain	3										
									$S_{\gamma j,k,Ni}$							_			
		¹³³ X				le from	e from ¹³⁵ 2							n	_				
		N_i		²³⁵ U	²³⁸ U	²³⁹ Pu	241	Pu			²³⁵ U	²³⁸ U	239	Pu	²⁴¹ Pu				
		¹³³ Xe		0.15	0.10	0.55	0.	19			0.00	0.00	0.0	00	0.00				
		¹³⁵ Xe		0.00	0.00	0.00	0.	00			0.14	0.09	0.5	57	0.19				
		¹³³ Cs		0.43	0.08	0.39	0.	10			0.00	0.00	0.0	00	0.00				
		¹³⁴ Cs		0.52	0.07	0.33	0.	07			0.00	0.00	0.0	00	0.00				
		¹³⁵ Cs		0.07	0.01	0.03	0.	00			0.40	0.07	0.3	34	0.08				
		¹⁵⁷ Cs		0.00	0.00	0.00	0.	00			0.00	0.00	0.0)0	0.00				
							(d)	Chain	4										
								$S_{\gamma j}$	k,Ni										
	1	⁴³ Ce from	l	1	⁴⁴ Ce froi	n		¹⁴⁷ Nd	from	l		¹⁴⁹ Pn	n from			¹⁵¹ Sr	n fron	ı	
I_i	²³⁵ U ²	³⁸ U ²³⁹ Pu	²⁴¹ Pu	²³⁵ U ²	³⁸ U ²³⁹ Pı	1 ²⁴¹ Pu	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pt	1 ²³⁵ U	J ²³⁸ U	²³⁹ Pu ²	²⁴¹ Pu	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu	
Ce	0.19 (0.10 0.51	0.19	0.00 0	.00 0.00	0.00	0.00	0.00	0.00	0.00	0.0	0 0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Ce	0.00 0	0.00 0.00	0.00	0.34 0	.10 0.42	0.15	0.00	0.00	0.00	0.00	0.0	0 0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Pr	0.20 0	0.10 0.51	0.19	0.00 0	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.0	0 0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Nd	0.47 (0.07 0.35	0.10	0.00 0	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.0	0 0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Nd	0.23 0	0.02 0.09	0.02	0.38 0	.05 0.16	0.04	0.00	0.00	0.00	0.00	0.0	0 0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Sm	0.00 0	0.00 0.00	0.00	0.00 0	0.00 0.00	0.00	0.07	0.01	0.04	0.01	0.1	5 0.04	0.14	0.04	0.06	0.06	0.29	0.13	
Sm	0.00 0	0.00 0.00	0.00	0.00 0	0.00 0.00	0.00	0.04	0.01	0.02	0.00	0.1	1 0.02	0.08	0.02	0.08	0.05	0.22	0.08	
Sm	0.00 0	0.00 0.00	0.00	0.00 0	0.00 0.00	0.00	0.04	0.00	0.02	0.00	0.0	9 0.02	0.06	0.02	0.07	0.04	0.18	0.07	
Eu	0.00 0	0.00 0.00	0.00	0.00 0	0.00 0.00	0.00	0.03	0.00	0.01	0.00	0.0	8 0.01	0.04	0.01	0.11	0.04	0.17	0.05	
Eu Eu	0.00 (0.00 0.00	0.00	0.00 0		0.00	0.02	0.00	0.01	0.00	0.0	/ U.UI	0.04	0.01	0.12	0.04	0.17	0.05	
EU		$0.00 \ 0.00$	0.00	0.00 0		0.00	0.02	0.00	0.01	0.00	0.0	/ U.UI	0.03	0.01	0.11	0.03	0.15	0.04	
DU 50			0.00				0.01	0.00	0.00	0.00	0.0	5 U.UI	0.02	0.00	0.10	0.04	0.13	0.03	
Ju	0.00 (0.00 0.00	0.00	0.00 0	.00 0.00	0.00	0.02	0.00	0.01	0.00	0.0	0.01	0.05	0.01	0.13	0.04	0.14	0.04	

Table 9 Summaries of sensitivity coefficients of fission yields $\gamma_{j,k}$ for fission products

(to be continued on next page)

inspection was considered in estimating the sensitivity coefficients. For fission products, the sensitivity coefficients of all the fission yields and capture cross sections, which are sensitive to fission products in relation to discussions in the following sections, are shown in Tables 9 and 10, respectively. The main results obtained from the sensitivity analysis are described as follows.

(1) Production of ²⁴⁴Cm

143

151

152

153

155

In Table 8, the ²⁴⁴Cm amount is highly sensitive to the fission and/or capture cross sections of ²³⁸U, ²³⁹⁻²⁴²Pu and ²⁴³Am as well as to the ²⁴⁴Cm capture cross section. In

Ref. 18), it has been reported that the measured effective capture cross section for ²⁴³Am is 16.3% greater than that calculated with JENDL-3.3. In Fig. 2, the calculated amounts of ²⁴⁰Pu and ²⁴¹Pu were overestimated by $5\sim7\%$. In addition, the sensitivity coefficients of their capture cross sections for the ²⁴⁴Cm amount are also large as shown in Table 8. Therefore, for example, the following three cases in which the capture cross sections of not only ²⁴³Am but also plutonium isotopes were adjusted were investigated to improve the calculated ²⁴⁴Cm amount, taking account of the sensitivity coefficients for ²⁴⁴Cm and the trend of the

(e) Chain 4 (cont.)

	$S_{\gamma j,k,Ni}$																
		¹⁵² Sr	n from			¹⁵³ Sr	n from			¹⁵⁴ Sm from				¹⁵⁵ Eu from			
N_i	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu	
¹⁴³ Ce	0.19	0.10	0.51	0.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
¹⁴⁴ Ce	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
¹⁴³ Pr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
¹⁴³ Nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
¹⁴⁴ Nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
¹⁵¹ Sm	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
¹⁵² Sm	0.05	0.03	0.16	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
¹⁵³ Sm	0.04	0.03	0.13	0.06	0.01	0.02	0.09	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
¹⁵³ Eu	0.07	0.03	0.13	0.04	0.03	0.02	0.10	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
¹⁵⁴ Eu	0.07	0.03	0.13	0.04	0.04	0.02	0.10	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
¹⁵⁵ Eu	0.07	0.02	0.11	0.03	0.04	0.02	0.09	0.04	0.00	0.00	0.01	0.00	0.00	0.01	0.05	0.03	
¹⁵⁴ Gd	0.11	0.03	0.11	0.02	0.09	0.03	0.12	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
¹⁵⁵ Gd	0.08	0.02	0.11	0.03	0.05	0.02	0.10	0.04	0.00	0.00	0.00	0.00	0.00	0.01	0.04	0.02	

Table 10 Summaries of sensitivity coefficients of capture cross sections $\sigma_{\gamma,j}$ for fission products

							(a) Chain	3							
									$S_{\sigma\gamma,j,Ni}$						-	
		N_i		¹³² X	le	1	³⁵ Xe		$\sigma_{\gamma,j}$ of $^{133}\mathrm{Cs}$		134	Cs		¹³⁵ Cs	-	
		¹³³ Xe	;	0.0	1		0.00		0.00		0	.00		0.00	-	
		¹³⁵ Xe	;	0.00)	_	-0.73		0.00		0	.00		0.00		
		^{133}Cs		0.00)		0.00		-0.24		0	.00		0.00		
		^{134}Cs		0.00)		0.00		0.80		-0	.15		0.00		
		¹³⁵ Cs		0.00)	-	-0.62		0.09		0	.10	-	-0.06		
		137 Cs		0.00)		0.00		0.00		0	.00		0.00		
							(b) Chain	4						•	
								$S_{\sigma\gamma}$	j,Ni							
-								$\sigma_{\gamma,j}$	of							
N_i	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁷ Pm	^{148m} Pm	¹⁴⁸ Pm	¹⁴⁸ Sm	¹⁴⁹ Sm	¹⁵⁰ Sm	¹⁵¹ Sm	¹⁵² Sm	¹⁵⁴ Sm	¹⁵³ Eu	¹⁵⁴ Eu	¹⁵⁵ Eu	¹⁵⁴ Gd	¹⁵⁵ Gd
¹⁴³ Ce	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
¹⁴⁴ Ce	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
¹⁴³ Pr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
¹⁴³ Nd	-0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
¹⁴⁴ Nd	0.24	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
¹⁵¹ Sm	0.00	0.00	0.06	0.01	0.01	0.01	-0.01	0.38	-0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00
¹⁵² Sm	0.00	0.00	0.04	0.01	0.00	0.00	-0.01	0.25	0.01	-0.78	0.00	0.00	0.00	0.00	0.00	0.00
¹⁵³ Sm	0.00	0.00	0.03	0.01	0.00	0.00	0.00	0.20	0.01	-0.45	0.00	0.00	0.00	0.00	0.00	0.00
¹⁵³ Eu	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.16	0.01	-0.36	0.00	-0.63	0.00	0.00	0.00	0.00
¹⁵⁴ Eu	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.15	0.02	-0.34	0.00	0.33	-0.83	0.00	0.00	0.00
¹⁵⁵ Eu	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.13	0.02	-0.29	0.01	0.31	0.08	-0.88	0.00	0.00
¹⁵⁴ Gd	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.10	0.03	-0.22	0.00	0.49	-0.76	0.00	-0.15	0.00
¹⁵⁵ Gd	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.12	0.02	-0.27	0.01	0.36	-0.14	-0.64	0.22	-0.90

C/E ratios shown in Fig. 2.

- Case 1: The capture cross section of ²⁴³Am increases by 16.3%.
- Case 2: The capture cross sections of ²⁴³Am and ²⁴¹Pu increase by 16.3 and 5%, respectively.
- Case 3: The capture cross sections of ²⁴³Am, ²⁴⁰Pu and ²⁴¹Pu increase by 16.3, 5 and 5%, respectively.

In the three cases calculated using Eq. (1), the ²⁴⁴Cm amount was increased by 9.2, 13.6 and 15.8% (Table 11), respectively, by adjusting the capture cross sections for ²⁴³Am and plutonium isotopes; consequently, the C/E ratio for ²⁴⁴Cm calculated with JENDL-3.3 improved from 0.83 to 0.88, 0.92 and 0.94, respectively. From the results, although the reevaluation of the cross sections is necessary

	Before adjustment	After adjustment (Change in amount) (%)		
Nuclide	C/E	Case 1	Case 2	Case 3
²⁴⁰ Pu	1.06	0.1	0.1 -1.1 3.9	-3.9
²⁴¹ Pu	1.07	0.0		-0.4
²⁴² Pu	0.91	0.0		5.2
²⁴³ Am	0.94	-6.9	-3.3	-1.7
²⁴⁴ Cm	0.83	9.2	13.6	15.8

Table 11Changes in amounts of 240 Pu, 241 Pu, 242 Pu, 243 Am and244 Cm after adjustment

Table 12	C/E ratios for ⁸⁸ Sr with	correction
----------	--------------------------------------	------------

	Before	Correction for fission yield
	correction	⁸⁸ Sr +11%
Ni	C/E	C/E
⁸⁸ Sr ⁹⁰ Sr ⁸⁹ Y	0.90 0.77 0.87	1.00 0.77 0.87

 Table 13
 C/E ratios for ⁹⁰Sr with correction

Before

correction

C/E

0.77

Ni

⁹⁰Sr

Correction for fission yield

⁹⁰Sr

+30%

C/E

1.00

for the comprehensive discussion based on further experimental results and their evaluations, the calculation accuracy of ²⁴⁴Cm will be improved by the reevaluating the capture cross sections of ²⁴³Am and plutonium isotopes, and finally, that of the neutrons emitted from spent fuels will also be improved.

(2) Production of ¹³⁵Cs and ¹⁴⁴Nd

In the cases of ¹³⁵Cs and ¹⁴⁴Nd, which are discussed in Section 5, there are two individual paths that have high sensitivities to their amounts as follows:

 ¹³⁵Cs: ¹³³Xe → ¹³³Cs → ¹³⁴Cs → ¹³⁵Cs and ¹³⁵Xe → ¹³⁵Cs,
 ¹⁴⁴Nd: ¹⁴³Ce → ¹⁴³Pr → ¹⁴³Nd → ¹⁴⁴Nd and ¹⁴⁴Ce → ¹⁴⁴Nd.

For both nuclides, the latter paths are clearly the main sensitive paths.

(3) Production of ¹⁵⁴Eu, ¹⁵⁴Gd, ¹⁵⁵Eu and ¹⁵⁵Gd

In the cases of ¹⁵⁴Eu, ¹⁵⁴Gd, ¹⁵⁵Eu and ¹⁵⁵Gd, which are discussed in Section 7, the paths that have large sensitivities to their amounts are

•
$${}^{151}\text{Sm} \rightarrow {}^{152}\text{Sm} \rightarrow {}^{153}\text{Sm} \rightarrow {}^{153}\text{Eu}$$

 $\rightarrow {}^{154}\text{Eu} \rightarrow {}^{154}\text{Gd} \rightarrow {}^{155}\text{Gd},$
• ${}^{151}\text{Sm} \rightarrow {}^{152}\text{Sm} \rightarrow {}^{153}\text{Sm} \rightarrow {}^{153}\text{Eu}$
 $\rightarrow {}^{154}\text{Eu} \rightarrow {}^{155}\text{Eu} \rightarrow {}^{155}\text{Gd}.$

In Table 10(b), the sensitivity coefficient of the capture cross section of ¹⁵⁵Eu for the ¹⁵⁵Gd amount is -0.64, while that of ¹⁵⁴Gd for ¹⁵⁵Gd is 0.22. Thus, the amount of ¹⁵⁵Gd strongly depends on that of ¹⁵⁵Eu rather than on that of ¹⁵⁴Gd. From this result, the main sensitive path for ¹⁵⁵Gd is the latter one.

5. Correction of Fission Yield or Capture Cross Section based on Sensitivity Analysis

To improve the calculation accuracy, the fission yield or capture cross section of the fission product that strongly affects the nuclide shown in Table 6 was corrected by making the C/E ratio for the concerned fission product equal to unity using Eq. (3) or (4). Namely, the correction value for the fission yield or capture cross section was defined using Eq. (5), and estimated with the C/E ratios shown in Fig. 3 and the sensitivity coefficients shown in Tables 9 and 10. Additionally, the recalculation using Eq. (2) with the correction value

was performed to estimate the C/E ratio for the concerned nuclide.

$$\frac{R_{0,j} - R_j}{R_j} = \frac{1}{S_{j,i}} \left(\frac{1}{(C/E)_i} - 1 \right),$$
(5)

where $R_{0,j}$: corrected fission yield or capture cross section of nuclide j

- R_j : fission yield $\gamma_{j,k}$ or capture cross section $\sigma_{\gamma,jl}$ of nuclide j before correction
- $S_{j,i}$: sensitivity coefficient $S_{\sigma\gamma,j,Ni}$ or $S_{\gamma j,k,Ni}$
- $(C/E)_i$: C/E ratio for nuclide i before correction.

In the following, the correction value and C/E ratio for each nuclide were discussed. Here the *S*'s in parentheses are the sum of the sensitivity coefficients for the fission yields of 235 U, 238 U, 239 Pu and 241 Pu in Table 9 or the sensitivity coefficient for the capture cross section in Table 10. (1) 88 Sr and 90 Sr

The C/E ratios for ⁸⁸Sr and ⁹⁰Sr are 0.90 and 0.77, respectively. The amounts of ⁸⁸Sr and ⁹⁰Sr are sensitive only to their own fission yields (S = 1.00 for ⁸⁸Sr and ⁹⁰Sr, respectively); they are not sensitive to the fission yields or capture cross sections of the other fission products in chain 1. This indicates that the underestimation of the amounts of these two fission products results from the underestimation of their own fission yields. Thus, a correction was performed on the fission yield of both fission products. The correction value of +11% for the ⁸⁸Sr fission yield was estimated using Eq. (5); consequently, the C/E ratio for ⁸⁸Sr improved from 0.90 to 1.00 (**Table 12**).

Similarly, for 90 Sr, the correction value of its own fission yield was +30% and its C/E ratio obtained by recalculation improved from 0.77 to 1.00 (**Table 13**). The two corrections did not affect the C/E ratios for the other fission products in chain 1.

(2) ⁸⁹Y

The C/E ratio for ⁸⁹Y is 0.87. The ⁸⁹Y amount is sensitive only to the ⁸⁹Sr fission yield (S = 1.00) because ⁸⁹Y is

	Before	Correction for fission yield		Before	Correction for fission yield
	correction	⁸⁹ Sr +15%		correction	¹⁰⁶ Ru 8%
Ni	C/E	C/E	Ni	C/E	C/E
⁹⁰ Sr ⁸⁹ Y	0.77 0.87	0.77 1.00	¹⁰⁶ Ru	1.09	1.00

Table 14 C/E ratios for ⁸⁹Y with correction

Table 15 C/E ratios for ¹⁰⁶Ru with correction

Table 16 C/E ratios for 133 Cs with correction

	Before	Correction for fission yield	Correction for capture cross section
	correction	¹³³ Xe	¹³³ Cs
		+10%	-41%
Ni	C/E	C/E	C/E
¹³³ Cs	0.91	1.00	1.01
¹³⁴ Cs	0.97	1.07	0.62
¹³⁵ Cs	0.92	0.93	0.88
¹³⁷ Cs	0.99	0.99	0.99

Table 17 C/E ratios for ¹³⁵Cs with correction

	Before	Correction fo	r fission yield	(Correction for ca	pture cross section	on
	correction	¹³³ Xe	¹³⁵ Xe	¹³⁵ Xe	¹³³ Cs	¹³⁴ Cs	¹³⁵ Cs
		+79%	+10%	-14%	+93%	+91%	-100%
Ni	C/E	C/E	C/E	C/E	C/E	C/E	C/E
¹³³ Cs	0.91	1.63	0.91	0.91	0.73	0.91	0.91
¹³⁴ Cs	0.97	1.73	0.97	0.97	1.59	0.85	0.97
¹³⁵ Cs	0.92	1.00	1.00	1.01	0.99	0.99	0.96
¹³⁷ Cs	0.99	0.99	0.99	0.99	0.99	0.99	0.99

mainly generated through the β^- decay of ⁸⁹Sr. Therefore, this indicates that the underestimation of the calculated ⁸⁹Y amount results from the underestimation of the ⁸⁹Sr fission yield. The correction value for the fission yield of ⁸⁹Sr was +15%; consequently, the C/E ratio for ⁸⁹Y improved from 0.87 to 1.00 with the correction (**Table 14**). (3) ¹⁰⁶Ru

The C/E ratio for ¹⁰⁶Ru is 1.09. The ¹⁰⁶Ru amount is sensitive only to ¹⁰⁶Ru's own fission yield (S = 1.00). Therefore, the overestimation of the calculated ¹⁰⁶Ru amount results from the overestimation of its own fission yield. The C/E ratio for ¹⁰⁶Ru improved from 1.09 to 1.00 (**Table 15**) by using the correction value of -8% for its own fission yield.

(4) ¹³³Cs

The C/E ratio for ¹³³Cs is 0.91. The ¹³³Cs amount is highly sensitive to the ¹³³Xe fission yield (S = 1.00) and the ¹³³Cs capture cross section (S = -0.24). Thus, a correction was carried out on the fission yield or capture cross section of ¹³³Xe and ¹³³Cs. The results obtained by recalculations are shown in **Table 16**. The correction value of -41% for the ¹³³Cs capture cross section improved the C/E ratio for ¹³³Cs from 0.91 to 1.01. However, the C/E ratios for ¹³⁴Cs

and ¹³⁵Cs then decreased from 0.97 to 0.62 and from 0.92 to 0.88, respectively. On the other hand, the correction value of +10% for the ¹³³Xe fission yield improved the C/E ratio for ¹³³Cs from 0.91 to 1.00. Then, the C/E ratios for ¹³⁴Cs and ¹³⁵Cs increased from 0.97 to 1.07 and from 0.92 to 0.93, respectively. Considering the trend of the C/E ratios for ¹³⁴Cs and ¹³⁵Cs, the results suggest that the underestimation of the calculated ¹³³Cs amount is mainly caused by the underestimation of the ¹³³Xe fission yield. (5) ¹³⁵Cs

The C/E ratio for ¹³⁵Cs is 0.92. The ¹³⁵Cs amount is sensitive to the fission yields of ¹³³Xe (S = 0.11) and ¹³⁵Xe (S = 0.89), and the capture cross sections of ¹³⁵Xe (S = -0.62), ¹³³Cs (S = 0.09), ¹³⁴Cs (S = 0.10) and ¹³⁵Cs (S = -0.06). The correction for the fission yield or capture cross section was performed and the results of recalculations are shown in **Table 17**. The correction value of +93% for the ¹³³Cs capture cross section resulted in the further underestimation of its own calculated amount; however, the calculated ¹³⁴Cs amount was overestimated. On the other hand, the correction value of +91% for the ¹³⁴Cs capture cross section resulted in the underestimation of ¹³⁴Cs's own calculated amount. From the two corrections, it is thought that the

	Before	Correction fo	r fission yield	Correction for capture cross section	
correction		¹⁴³ Ce	¹⁴⁴ Ce	¹⁴³ Nd	
		+27%	+16%	+41%	
Ni	C/E	C/E	C/E	C/E	
¹⁴⁴ Ce	0.90	0.90	1.04	0.90	
¹⁴³ Nd	1.05	1.34	1.05	0.86	
¹⁴⁴ Nd	0.91	0.99	1.01	0.98	
¹⁴⁵ Nd	1.03	1.03	1.04	1.03	
¹⁴⁶ Nd	0.96	0.96	0.96	0.96	

Table 18 C/E ratios for ¹⁴⁴Nd with correction

Fig. 6 Scheme of power histories

underestimation of the calculated ¹³⁵Cs amount is not caused by the capture cross section of ¹³³Cs or ¹³⁴Cs. Regarding xenon isotopes, for the correction value of +79% for the ¹³³Xe fission yield, the calculated amounts of ¹³³Cs and ¹³⁴Cs were markedly overestimated. The correction value of +10% for the ¹³⁵Xe fission yield resulted in a C/E ratio of 1.00 for 135 Cs, and that of -14% for the 135 Xe capture cross section resulted in a C/E ratio of 1.01. Additionally, the correction for the fission yield or capture cross section of ¹³⁵Xe negligibly affected the calculated amounts of the other nuclides. For the ¹³⁵Cs capture cross section, its sensitivity coefficient is small. Thus, the C/E ratio improved from 0.92 to 0.96 when the capture cross section of ¹³⁵Cs was close to zero (*i.e.*, the correction value was nearly -100%). The trends of the C/E ratios as mentioned above suggest that the underestimation of the fission yield or the overestimation of the capture cross section of ¹³⁵Xe results mainly in the underestimation of the calculated ¹³⁵Cs amount.

(6) ¹⁴⁴Nd

The C/E ratio for ¹⁴⁴Nd is 0.91. The ¹⁴⁴Nd amount is highly sensitive to the fission yields of ¹⁴³Ce (S = 0.36) and ¹⁴⁴Ce (S = 0.63), and the capture cross section of ¹⁴³Nd (S = 0.24). The results from recalculations with correction are given in **Table 18**. The correction value of +27% for the ¹⁴³Ce fission yield resulted in a C/E ratio of 1.34 for ¹⁴³Nd. Although the correction value of +41% for the ¹⁴³Nd capture cross section resulted in a C/E ratio of 0.98 for ¹⁴⁴Nd, the C/E ratio for ¹⁴³Nd decreased from 1.05 to 0.86. On the other hand, the correction value of +16% for the ¹⁴⁴Ce fission yield improved the C/E ratio for ¹⁴⁴Nd from 0.91 to 1.01 and this correction hardly affected the C/E ratios for the other nuclides. The results suggest that the underestimation of the ¹⁴⁴Ce fission yield results mainly in the underestimation of the calculated ¹⁴⁴Nd amount.

The correction value for each nuclide was estimated in the above. In addition, the correction assuming the same corrected values for the fission and capture cross sections was carried out on the calculated ²³⁹Pu and ²⁴¹Pu amounts, whose C/E values were overestimated as shown in Fig. 2, and their effects on the C/E ratios for ^{88,90}Sr, ⁸⁹Y, ¹⁰⁶Ru, ^{133,135}Cs and ¹⁴⁴Nd were also investigated. The results showed that the C/E ratios for these nuclides, except for ¹⁰⁶Ru, improved by about 2% and this trend was consistent with the trend of the correction for the fission yields discussed above. For ¹⁰⁶Ru, its calculated amount was overestimated more.

6. Effect of Power History on Nuclide Composition

To determine the effect of power history on the nuclide composition, a comparison of the nuclide compositions in the detailed¹⁹⁾ and constant power histories was carried out for sample A. The detailed power history is composed of 12 steps of time in each cycle. On the other hand, the constant power history as a reference case is given in Table 1. The scheme of both cases is shown in **Fig. 6**. The calculation was carried out using SWAT.

Table 19 shows the nuclides whose calculated amounts are changed more than 1% in the detailed power history. For ²⁴¹Am, the β^- decay of ²⁴¹Pu that is not sensitive to the power history predominantly affected the ²⁴¹Am amount during cooling. Similarly, for ¹⁵⁵Gd, the β^- decay of ¹⁵⁵Eu that is also not sensitive to the power history affected the ¹⁵⁵Gd amount during cooling. Thus, although the amounts of ²⁴¹Am and ¹⁵⁵Gd calculated with the detailed power history increased by 1.4 and 3.6% at discharge, respectively, their increased ratios decreased with the contribution of β^- decay during cooling. The ¹³⁵Cs amount is mainly

		Change in amount (%)*	
Nuclide	At discharge	After 1-year cooling	After 2-year cooling
²⁴¹ Am	1.4	0.7	0.6
^{242m} Am	1.0	1.0	1.0
¹³⁵ Cs	1.7	1.7	1.7
¹⁴⁹ Pm	-5.1		
¹⁴⁹ Sm	0.2	-1.9	-1.9
¹⁵⁵ Sm	-4.7		
¹⁵⁵ Gd	3.6	0.2	0.2

Table 19 Effects of power history on nuclide composition

*(Amount of detailed power – Amount of constant power) \times 100/(Amount of constant power)

produced through the β^- decay of ¹³⁵Xe whose capture cross section and half-life are 1.94×10^5 barn and 9.1 hours, respectively. The power level at the last step of the detailed power history was lower than that of the constant one, and it made the capture reaction of ¹³⁵Xe decrease; consequently, the ¹³⁵Cs amount produced from ¹³⁵Xe increased. In ¹⁴⁹Pm and ¹⁵⁵Sm, their half-lives, which are 2.2 days and 22.3 minutes, respectively, are slightly short. Thus, their amounts at discharge decreased, depending on the lower power level at the last step of the detailed power history. The ¹⁴⁹Pm amount also affected the ¹⁴⁹Sm amount by its β^- decay; consequently, the ¹⁴⁹Sm amount also decreased.

7. Comparison of JENDL with ENDF/B-VI, JEF and JEFF for Fission Products Showing Dependence on Type of Library

In Fig. 3, the C/E ratios for ¹⁵⁴Eu, ¹⁵⁴Gd, ¹⁵⁵Eu and ¹⁵⁵Gd strongly depend on the type of library. Thus, the reason for the dependence was investigated using the sensitivity coefficients as follows.

(1) 154 Eu and 154 Gd

The C/E ratios for ¹⁵⁴Eu and ¹⁵⁴Gd calculated with ENDF/B-VI.5 and JEF-2.2 are larger than those calculated with the other libraries. In the sensitive path for ¹⁵⁴Eu described in Section 4, the C/E ratios for the fission products from ¹⁵¹Sm to ¹⁵³Eu and the capture cross sections of ^{151,152}Sm and ¹⁵³Eu to which the ¹⁵⁴Eu amount are sensitive are similar among the libraries. Additionally, the ¹⁵⁴Eu capture cross sections calculated with ENDF/B-VI.5 and JEF-2.2 are about 230 and 115 barn, respectively, and these values are smaller than those calculated with the other libraries (about 270 barn). The ¹⁵⁴Eu amount is also sensitive to ¹⁵⁴Eu's own capture cross section (S = -0.83). Thus, the overestimation of the ¹⁵⁴Eu amounts calculated with the two libraries was caused by ¹⁵⁴Eu's own small capture cross sections. Consequently, the calculated amounts of ¹⁵⁴Eu affected directly those of ¹⁵⁴Gd. Regarding ENDF/B-VI.8 and JEFF-3.0, the capture cross sections for ¹⁵⁴Eu improved, and their C/E ratios were similar to those calculated with JENDL-3.2 and JENDL-3.3.

(2) ¹⁵⁵Eu and ¹⁵⁵Gd

The main sensitive path for 155 Gd is from 155 Eu to 155 Gd as mentioned in Section 4. The C/E ratios for 155 Eu and 155 Gd calculated with ENDF/B-VI.5 are smaller than those calculated with the other libraries. The 154 Eu capture cross

section calculated with ENDF/B-VI.5 is smaller than those calculated with the other libraries and the ¹⁵⁵Eu capture cross section calculated with ENDF/B-VI.5 (about 1100 barn) is larger than those in other libraries (660–780 barn). Additionally, the ¹⁵⁵Eu amount is sensitive to ¹⁵⁴Eu and ¹⁵⁵Eu's own capture cross sections. Therefore, the ¹⁵⁵Eu amount calculated with ENDF/B-VI.5 was smaller than those calculated with the other libraries and affected directly the ¹⁵⁵Gd amount. In ENDF/B-VI.8, the ¹⁵⁵Eu capture cross section was improved, so that the C/E ratio for ¹⁵⁵Eu was near 1.00.

In the calculation with JEF-2.2, the C/E ratio for 155 Eu is 1.09, although that for 154 Eu is 2.09. The 154 Eu capture cross section calculated with JEF-2.2 is about half those calculated with the other libraries. Thus, the C/E ratio for 155 Eu in JEF-2.2 improved to nearly 1.00.

IV. Conclusions

A chemical isotopic analysis of a high-burnup PWR-UO₂ fuel was carried out, followed by computational analysis using SWAT. The underestimation of the calculated ²⁴⁴Cm amount was discussed using the simple depletion calculation, and the fission products such as ⁸⁸Sr, ⁹⁰Sr, ⁸⁹Y, ¹⁰⁶Ru, ¹³³Cs, ¹³⁵Cs and ¹⁴⁴Nd were also investigated to improve their calculated amounts using simplified burnup chains. The effect of power history on nuclide composition and the dependence of the C/E ratios for fission products on the type of library were discussed. The following results were obtained.

- (1) The extensive isotopic compositions such as uranium, neptunium, plutonium, americium, curium, rubidium, strontium, yttrium, ruthenium, cesium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium and gadolinium of the three samples extracted at different axial positions of a high-burnup UO_2 fuel were obtained experimentally to evaluate and improve the calculation accuracy.
- (2) The calculated amount of ²⁴⁴Cm, which is the major neutron emitter in spent fuels, was significantly underestimated. From the results calculated with the adjusted capture cross sections of ²⁴³Am and plutonium isotopes, the calculation accuracy of ²⁴⁴Cm could be improved by reevaluating the capture cross sections of both ²⁴³Am and plutonium isotopes.
- (3) For ⁸⁸Sr, ⁹⁰Sr and ¹⁰⁶Ru, the correction for their own fis-

sion yields improved their C/E ratios. In the case of ⁸⁹Y, the correction for the ⁸⁹Sr fission yield improved the C/E ratio for ⁸⁹Y. For ¹³³Cs, the correction for the ¹³³Xe fission yield improved the C/E ratio for ¹³³Cs. On the other hand, for ¹³⁵Cs, it was suggested that the underestimation of the fission yield or the overestimation of the capture cross section of ¹³⁵Xe resulted mainly in the underestimation of the calculated ¹³⁵Cs amount. In the case of ¹⁴⁴Nd, it was suggested that the underestimation of the calculated ¹³⁵Cs amount.

- (4) In the comparison of the calculated amounts with the detailed and constant power histories, the calculated amounts of ²⁴¹Am, ^{242m}Am, ¹³⁵Cs, ¹⁴⁹Pm, ¹⁴⁹Sm, ¹⁵⁵Sm and ¹⁵⁵Gd were slightly affected by the power history.
- (5) For ¹⁵⁴Eu and ¹⁵⁴Gd calculated with ENDF/B-VI.5 and JEF-2.2, the overestimation of the calculated ¹⁵⁴Eu amounts resulted from ¹⁵⁴Eu's own small capture cross sections, and the calculated amount of ¹⁵⁴Gd reflected that of ¹⁵⁴Eu. For ¹⁵⁵Eu and ¹⁵⁵Gd calculated with ENDF/B-VI.5, the ¹⁵⁴Eu capture cross section was smaller than those in the other libraries. In contrast, the ¹⁵⁵Eu capture cross section was larger than those in the other libraries, and the calculated amount was smaller than those in the other libraries, and the calculated amount of ¹⁵⁵Gd directly reflected that of ¹⁵⁵Eu.

Futher experimental determination of nuclide composition is required to improve the calculation accuracy for the nuclide composition of a high-burnup UO₂ spent fuel, particularly ²³⁷Np, ^{242m}Am and ²⁴²Cm for actinides. For ²⁴¹Am, it is necessary to evaluate its calculation accuracy. Regarding fission products, it is necessary to evaluate the calculation accuracy for the amounts of ¹⁴⁴Ce, ¹⁴⁷Pm, ¹⁵¹Sm and gadolinium isotopes, which are used as burnup indicators or contribute to neutron absorption.

Acknowledgement

The chemical isotopic analysis in this study was carried out under a contract from the Ministry of Economy, Trade and Industry (METI) of the Japanese government.

References

- K. Suyama, A. Nouri, H. Mochizuki *et al.*, "Improvements to SFCOMPO—A database on isotopic composition of spent nuclear fuel," *Proc. 7th Int. Conf. on Nuclear Criticality Safety (ICNC2003)*, Tokai-mura, Japan, Oct. 20–24, 2003, JAERI-Conf 2003-019, Japan Atomic Energy Research Institute, 890–892 (2003).
- 2) K. Okumura, S. Ohki, M. Yamamoto et al., Study on the Prediction Accuracy of Nuclide Generation and Depletion

with JENDL, JAERI-Research 2004-025, Japan Atomic Energy Research Institute, (2005), [in Japanese].

- Y. Nakahara, K. Suyama, T. Suzaki, *Technical Development* on Burn-up Credit for Spent LWR Fuels, JAERI-Tech 2000-071, Japan Atomic Energy Research Institute, (2000), [in Japanese].
- B. D. Murphy, R. T. Primm III, "Simulation of mixed-oxide and low-enriched uranium fuel burnup in a pressurized water reactor and validation against destructive analysis results," *Nuclear Science and Engineering*, 142, 258–269 (2002).
- Y. Ando, K. Yoshioka, I. Mitsuhashi *et al.*, "Development and verification of Monte Carlo burnup calculation system," *Proc. 7th Int. Conf. on Nuclear Criticality Safety (ICNC2003)*, Tokai-mura, Japan, Oct. 20–24, 2003, JAERI-Conf 2003-019, Japan Atomic Energy Research Institute, 494–499 (2003).
- 6) A. Sasahara, T. Matsumura, G. Nicolaou *et al.*, "Neutron and gamma ray source evaluation of LWR high burn-up UO₂ and MOX spent fuels," *J. Nucl. Sci. Technol.*, **41**, 448 (2004).
- K. Suyama, T. Kiyosumi, H. Mochizuki, *Revised SWAT—The* Integrated Burn-up Calculation Code System, JAERI-Data/ Code 2000-027, Japan Atomic Energy Research Institute (JAERI), (2000), [in Japanese].
- T. Nakagawa, K. Shibata, S. Chiba *et al.*, "Japanese Evaluated Nuclear Data Library Version 3 Revision-2: JENDL-3.2," *J. Nucl. Sci. Technol.*, **32**, 1259 (1995).
- K. Shibata, T. Kawano, T. Nakagawa *et al.*, "Japanese Evaluated Nuclear Data Library Version 3 Revision-3: JENDL-3.3," *J. Nucl. Sci. Technol.*, **39**, 1125 (2002).
- P. F. Rose, ENDF-201, ENDF/B-VI Summary Documentation, BNL-NCS-17541, 4th Edition, Brookhaven National Laboratory (BNL), (1991).
- C. Nordborg, M. Salvatores, "Status of the JEF Evaluated Data Library," *Proc. Int. Conf. Nuclear Data for Science and Technology*, Gatlinburg, Tennessee, USA, May 9–13, 1994, Vol. 2, 680 (1994).
- 12) R. Jacqmin, R. Forrest, J. Rowlands *et al.*, "Status of the JEFF-3 Project," *Proc. Int. Conf. on Nuclear Data for Science and Technology*, Tsukuba, Japan, Oct. 7–12, 2001, Vol. 1, 54 (2002).
- A. Sasahara, T. Matsumura, G. Nicolaou, *Posit Irradiation Examinations and the Validity of Computational Analysis for High Burn-up UO₂ and MOX Spent Fuels, CRIEPI report, T95012, (1996), [in Japanese].*
- K. Tsuchihashi, Y. Ishigro, K. Kaneko *et al.*, *Revised SRAC Code System*, JAERI 1302, Japan Atomic Energy Research Institute, (1986).
- A. G. Croff, A User's Manual for the ORIGEN2 Computer Code, ORNL/TM-7175, Oak Ridge National Laboratory, (1980).
- 16) K. Tasaka, J. Katakura, H. Ihara et al., JNDC Nuclear Data Library of Fission Products—Second Version—, JAERI 1320, Japan Atomic Energy Research Institute, (1990).
- K. Kobayashi, *Reactor Physics*, Corona Publishing Co., Ltd., (1996), [in Japanese].
- M. Ohta, S. Nakamura, H. Harada, "Measurement of effective capture cross section of Americium-243 for thermal neutrons," *J. Nucl. Sci. Technol.*, 43, 1441 (2006).
- 19) R. Bodmer, private communication (2007).